Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS Sustainable Chemistry and Engineering ; 2023.
Article in English | Scopus | ID: covidwho-2294964

ABSTRACT

Atmospheric water harvesting (AWH) is a potentially promising small-scale approach to alleviate the water crisis in arid or semiarid regions. Inspired by the asymmetric structure of tillandsia leaves, a plant species native to semiarid regions, we report the development of a bioinspired composite (BiC) to draw moisture for AWH applications. With the advent of the post-COVID era, the nonwoven materials in used masks are discarded, landfilled, or incinerated along with the masks as medical waste, and the negative impact on the environment is inevitable. The nonwoven sheet has porosity, softness, and certain mechanical strength. We innovatively developed BiCs, immobilizing hygroscopic salt with a nonwoven mask for fast vapor liquefaction and using a polymer network to store water. The resulting BiC material manages to achieve a high-water adsorption capacity of 1.24 g g-1 under a low-moderate humidity environment and a high-water release ratio of ca. 90% without the use of photothermal materials, while maintaining high structural integrity in cyclic testing. © 2023 American Chemical Society.

2.
Int J Environ Health Res ; : 1-10, 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2050894

ABSTRACT

Since the (Covid-19) pandemic outbreak, questioning regarding climate and incident of Covid-19 infection rates has been debated, while there is no clear research evidence until now in Iran. This study has focused on investigating the association between Covid-19 cases and demographic -meteorological factors in arid and semi-arid zones of Iran (from March 1, 2020, to January 31, 2022) by analyzing with Via Poisson and negative binomial regression. As a result, the incidence rate of both Covid-19 hospitalization and mortality cases reached peaks in the summer followed by the autumn. Interestingly, Covid-19 hospitalization cases are associated with humidity, temperature, and wind factors seasonally and monthly, but mortality cases are just associated with wind. In conclusion, the result demonstrated that demographicand meteorological factorsare positively and negatively associated with Covid-19 cases. Therefore, identifying the environmental factors contributing to the excess Covid-19 can help to prevent future pandemic waves in Iranian arid and semi-arid zone.

SELECTION OF CITATIONS
SEARCH DETAIL